GitLab Artifact Tools Documentation
Release 2.2.1

Mike Haboustak

Aug 07, 2022

Contents

Requirements 3
Installation 5
Expiration Strategies 7
3.1 Artifact DiSpositions L L. e e e e e e e e e e e e e e e e 7
32 LASTGOOD_PIPELINE e e e e e e e e 8
33 LASTGOOD_JOB e 8
Configuration 9

GitLab Artifact Tools Documentation, Release 2.2.1

The artifact expiration feature provided by GitLab only supports time-based artifact retention policies. GitLab admins
can set a global retention period—specified in days, weeks, months, or years—for all jobs that produce artifacts. At
the project level, the global retention period can be replaced per-job in the . gitlab-ci.yml CI configuration.

From the community’s perspective, this method of expiring artifacts is insufficient.
1. Tagged artifacts are removed because there’s no easy way to keep tagged artifacts.

2. You can’t reliably fetch artifacts for a project because we can’t ensure the latest artifacts are kept for projects
that build infrequently.

3. The keep artifacts safety valve that’s used prevent artifact expiration can’t be reset. When the Keep
button is clicked, the artifacts are kept forever.

Glartifacts extends GitLab’s artifact expiration feature to better fit real-world artifact retention needs. It defines several
artifact expiration strategies that can be applied per-project by GitLab administrators. Once applied, artifact expiration
just works. The job definitionsin . gitlab-ci.yml do not need to define when their artifacts are saved or removed.
Projects that are configured with time-based expiration continue to work, because glartifacts only updates artifacts that
aren’t already set to expire.

Warning: Using glartifacts to manage artifact expiration breaks GitLab’s keep artifacts feature. Clicking the
Keep button on a job whose artifacts are managed by glartifacts does nothing. In most cases, a sensible artifact
retention policy eliminates the need for the Keep button, but that may not be true for your projects.

A GitLab enhancement has been proposed to replace the keep artifacts feature with protected artifacts. If you want
to use glartifacts, but also need the Keep button, please support the linked proposal.

Contents 1

https://gitlab.com/gitlab-org/gitlab-ce/issues/24692
https://gitlab.com/gitlab-org/gitlab-ce/issues/23777
https://gitlab.com/gitlab-org/gitlab-ce/issues/29182
https://gitlab.com/gitlab-org/gitlab-ce/issues/43576

GitLab Artifact Tools Documentation, Release 2.2.1

2 Contents

CHAPTER 1

Requirements

Glartifacts requires Python 3.

Be sure you have a GitLab backup before you start. Glartifacts modifies the ci_builds.
artifacts_expire_at column in the GitLab database. The next execution of the

expire_build_artifacts_worker background job will remove CI artifacts from the database and file
system. Once removed, artifacts are non-recoverable.

GitLab Artifact Tools Documentation, Release 2.2.1

4 Chapter 1. Requirements

CHAPTER 2

Installation

Glartifacts can be installed from PyPI using pip

pip install glartifacts

The default installation is configured for a GitLab Omnibus install. See the Configuration section for information on
adjusting the settings for your environment.

https://pypi.org/project/glartifacts/

GitLab Artifact Tools Documentation, Release 2.2.1

6 Chapter 2. Installation

CHAPTER 3

Expiration Strategies

An expiration strategy is a set of rules used to identify artifacts that can be removed. Each strategy starts by finding a
point-in-time where a project’s artifacts are considered good and should be kept. Artifacts newer than this point-in-time
are kept, artifacts that are older are removed.

3.1 Artifact Dispositions

When an expiration strategy is applied to a project, it assigns an artifact disposition to each CI job. The disposition
determines the action that should be taken for artifacts associated with that job.

The following table lists the artifact dispositions used by expiration strategies to categorize artifacts.

Table 1: artifact dispositions

Disposition | Description Action
good Artifacts identified as the point-in-time where artifacts should be kept. KEEP
new Artifacts newer than the good artifacts point-in-time. KEEP
old Artifacts older than the good artifacts point-in-time. REMOVE
orphaned | Artifacts whose job (by name) or branch has been removed. REMOVE
tagged Artifacts from a tagged build. KEEP
expiring | Artifacts with an expiration date set. IGNORE

Artifacts with the good or new disposition are newer than the point-in-time identified by the expiration strategy and
are kept. Artifacts with the o1d disposition are older than the point-in-time and will be removed.

Artifacts with the orphaned disposition are from a branch or job that has been removed. Branches are removed
when they are merged upstream. Jobs are removed when they are renamed in or removed from .gitlab-ci.yml.
In both cases, the artifacts will also be removed.

Artifacts with the tagged disposition are never removed. Each tag represents a release of a project that should be
kept forever.

Artifacts with the expiring disposition have been previously scheduled for removal and are not modified by the
expiration strategy.

GitLab Artifact Tools Documentation, Release 2.2.1

3.2 LASTGOOD_PIPELINE

The LASTGOOD_PIPELINE strategy uses the most recent successful pipeline as the good artifacts point-in-time.
A successful pipeline is identified by a green checkmark in the GitLab CI pipelines view, where all jobs are either
successful, canceled, or marked as allow failure.

This strategy ensures that a complete set of artifacts are kept for each branch.

3.3 LASTGOOD_JOB

The LASTGOOD_JOB strategy uses the most recent successful job as the good artifacts point-in-time. A successful
job is identified by a green checkmark in the GitLab CI jobs view.

This strategy is more aggressive than LASTGOOD_PIPELINE because it ensures that only the most recent artifacts
for each job are kept, even if the overall pipeline fails.

8 Chapter 3. Expiration Strategies

CHAPTER 4

Configuration

Glartifacts requires access to the GitLab database and Gitaly server. The default connection settings are based on a
standard Omnibus install, but can be modified for custom deployments via settings in glartifacts.conf. You can also
override settings per-invocation using environment variables.

The table below lists the available configuration options:

Table 1: glartifacts.conf settings

Section | Option | ENV variable Default value

postgres | dbname | GLARTIFACTS_DBINAMiEbhq_production

postgres | user GLARTIFACTS_DBU$HRb

postgres | host GLARTIFACTS_DBHOS®H opt/gitlab/postgresql

postgres | port GLARTIFACTS_DBPGRT2

gitaly address | GLARTIFACTS_GITALYAIRRopt/gitlab/gitaly/gitaly.socket

Glartifacts searches for glartifacts.confin /etc/glartifactsand SHOME/.config/glartifacts.
Settings are merged for each conf file found: User Settings > System Settings >Default Settings.

Example glartifacts.conf

[postgres]

user = gitlab

host = /var/opt/gitlab/postgresql
port = 5432

lgitaly]
address = unix:/var/opt/gitlab/gitaly/gitaly.socket

	Requirements
	Installation
	Expiration Strategies
	Artifact Dispositions
	LASTGOOD_PIPELINE
	LASTGOOD_JOB

	Configuration

